BioMax Environmental Environmental Consulting and Industrial Hygiene Services August 26th, 2008 Mr. Doug Button Deputy Director Real Estate Services Division 707 Third Street - 8th Floor West Sacramento, CA 95605 Post Mitigation Assessment Report Department of General Services Board of Equalization Building Break Rooms 2202, 2223, 2224, and 22 Men's and Women's Restrooms 450 N. Street Sacramento, California Mr. Button, BioMax Environmental, LLC (BioMax) is pleased to provide The Department of General Services (DGS) with this letter summary report detailing BioMax's findings and recommendations pertaining to our post mitigation microbial inspection and sampling assessment services provided within the noted break rooms and interior areas of the 22nd and 23rd floors of the Board of Equalization (BOE) building located at 450 N Street, Sacramento, California. BioMax understands that these post mitigation microbial inspection and sampling assessment services were contracted with BioMax, at your request, in an effort to review and verify the successful completion of microbial mitigative efforts performed by your restoration contractor, JLS Environmental, Inc., (JLS) within the previously identified areas located within the subject building. Therefore, these post mitigation clearance assessment services are intended to assess the current site conditions wherein mitigative activities were performed by JLS to investigate and address (as needed) the prior moisture and mold related damages and impacts. Procedural recommendations pertaining to BioMax's review of historical and analytical data associated with the subject break room and interior areas have been summarized within our previously developed procedural assessment reports including those entitled: - Mitigative and Clean Up Procedures for Interior Electrical/Data Rooms, Janitorial Rooms, Supply Rooms, Copy Rooms, Storage Rooms, and Rest Room Areas, dated May 7th, 2008. - 22nd Floor Procedures for Destructive Inspection and Microbial Mitigation, dated May 9th, 2008. - Microbial Assessment of Break Room Areas ("Building Wide"), dated July 11th, 2008 Additional historical reports and assessment data may also be obtained for further historical background and technical reference, as necessary. Hence, these post mitigation microbial clearance assessment services, thereby, are intended to provide a professional evaluation verifying the physical conditions wherein the successful completion of microbial removal and decontamination within each of the affected areas has been achieved. Following the completion of the prescribed mitigative activities performed by your mitigation contractor, Mr. Michael A. Polkabla, CIH, REA of BioMax performed a detailed post mitigation site inspection and sampling assessment within each of the affected interior areas (and adjacent impacted areas as necessary) as noted in this report. BioMax's findings and conclusions pertaining to these post mitigation sampling assessment activities are, therefore, summarized herein. # SITE OBSERVATIONS Site inspection and post mitigation assessment sampling activities were performed within the noted 22nd floor break rooms May 21st, 2008 and within the 22nd floor Men's and women's restrooms on June 2nd, 2008. Site access into each of these contained areas on these respective dates was facilitated by site contractor and DGS personnel. On each of these dates, Mr. Michael A. Polkabla, CIH, REA of BioMax performed a detailed visual site inspection within the noted containment system barriers associated with the noted interior areas identified as break rooms 2202, 2223, and 2224 as well as the 22nd Floor Men's and Women's restroom area, respectively. Following the successful completion of our visual assessments, BioMax also and collected a series of airborne confirmation samples within and surrounding each of these areas as noted below. On-site inspection and clearance sampling assessment activities were performed by Mr. Michael A. Polkabla, CIH, REA, of BioMax in accordance with currently recognized microbial assessment and sampling guideline procedures. Mr. Polkabla has been certified in the Comprehensive Practice of Industrial Hygiene by the American Board of Industrial Hygiene and holds the right to the designation "Certified Industrial Hygienist" (CIH) under certification number CP 7104. Mr. Polkabla is also certified by the California Environmental Protection Agency (Cal/EPA) as a Class I Registered Environmental Assessor (REA) under Cal/EPA certification number 05011. Previously established clearance criteria developed for these activities has been formalized in BioMax's Post Mitigation Clearance Assessment Protocols dated February 15th, 2008. Such protocols have been reviewed and approved by BOE's environmental consultant, Hygientech International, Inc. (HTI) prior to implementation. A summary of significant notations and observations gathered during BioMax's site inspection and post mitigation clearance assessment activities within the subject containment areas are compiled as follows: At the time of our site inspection and clearance sampling assessment performed within the noted break rooms on May 21st, 2008 ambient outdoor conditions both prior to and following Additional historical reports and assessment data may also be obtained for further historical background and technical reference, as necessary. Hence, these post mitigation microbial clearance assessment services, thereby, are intended to provide a professional evaluation verifying the physical conditions wherein the successful completion of microbial removal and decontamination within each of the affected areas has been achieved. Following the completion of the prescribed mitigative activities performed by your mitigation contractor, Mr. Michael A. Polkabla, CIH, REA of BioMax performed a detailed post mitigation site inspection and sampling assessment within each of the affected interior areas (and adjacent impacted areas as necessary) as noted in this report. BioMax's findings and conclusions pertaining to these post mitigation sampling assessment activities are, therefore, summarized herein. # SITE OBSERVATIONS Site inspection and post mitigation assessment sampling activities were performed within the noted 22nd floor break rooms May 21st, 2008 and within the 22nd floor Men's and women's restrooms on June 2nd, 2008. Site access into each of these contained areas on these respective dates was facilitated by site contractor and DGS personnel. On each of these dates, Mr. Michael A. Polkabla, CIH, REA of BioMax performed a detailed visual site inspection within the noted containment system barriers associated with the noted interior areas identified as break rooms 2202, 2223, and 2224 as well as the 22nd Floor Men's and Women's restroom area, respectively. Following the successful completion of our visual assessments, BioMax also and collected a series of airborne confirmation samples within and surrounding each of these areas as noted below. On-site inspection and clearance sampling assessment activities were performed by Mr. Michael A. Polkabla, CIH, REA, of BioMax in accordance with currently recognized microbial assessment and sampling guideline procedures. Mr. Polkabla has been certified in the Comprehensive Practice of Industrial Hygiene by the American Board of Industrial Hygiene and holds the right to the designation "Certified Industrial Hygienist" (CIH) under certification number CP 7104. Mr. Polkabla is also certified by the California Environmental Protection Agency (Cal/EPA) as a Class I Registered Environmental Assessor (REA) under Cal/EPA certification number 05011. Previously established clearance criteria developed for these activities has been formalized in BioMax's Post Mitigation Clearance Assessment Protocols dated February 15th, 2008. Such protocols have been reviewed and approved by BOE's environmental consultant, Hygientech International, Inc. (HTI) prior to implementation. A summary of significant notations and observations gathered during BioMax's site inspection and post mitigation clearance assessment activities within the subject containment areas are compiled as follows: At the time of our site inspection and clearance sampling assessment performed within the noted break rooms on May 21st, 2008 ambient outdoor conditions both prior to and following our interior assessment activities consisted of clear and mild conditions with an outdoor temperatures range between 62 and 76 degrees F and relative humidity of 26-30 %. Predominant winds were noted at approximately 0-5 knots from the southwesterly direction at the time of our assessment. Interior environmental conditions within the sampled break room areas consisted of a temperature range between 80 and 86 degrees F with relative humidity range of 26 to 29 percent. - 2. At the time of this assessment, each of the observed interior containment barrier systems, whereby microbial mitigative and inspection activities were performed, were established and maintained within the impacted areas as per BioMax's protocols. Specific detail as noted on the "as built" construction site floor diagram documents may be reviewed for further reference as necessary. BioMax routinely performed regular and periodic inspections and review of records/conditions within and surrounding each of the noted containment areas during mitigative activities. A review of such information has indicated a preponderance of evidence indicating that the current protective systems have provided appropriate control barriers for the duration and performance of the noted mitigative activity. - 3. During this post mitigation inspection of each break room containment system, BioMax noted the absence of visible interior indications of elevated residual moisture and/or microbial indicators (such as staining, delamination, etc.) within the remaining exposed interior walls, wall framing, and wall cavities following
the performance of mitigative measures. Utilization of a TraMex hand-held inductive moisture meter indicated normal moisture content within all remaining walls and building materials inspected within the sampled containment areas at the time of our assessment. - 4. As noted within the previously referenced assessment reports, the primary affected areas of visible moisture damage previously identified within the noted break room areas primarily included moisture staining and mold damaged cabinetry, adjacent flooring, and wallboard materials. According to BioMax's review of current evidence and available historical data, it is BioMax's opinion that such material damage was likely caused by a history of chronic plumbing deficiencies and water release events over an extended period of time. - 5. The establishment of containment system barriers encompassing each of the interior affected break room (and) associated areas were observed and verified under appropriate posting and negative pressure differential at the time of this post mitigation assessment. Worker and equipment entry and exit chambers comprised of a series of zippered plastic access doorways were also observed attached to the noted containment barriers consistent with BioMax's previously noted mitigation protocols. - 6. As verified during these assessment activities, all identified affected interior wallboard building materials had been removed from each of the noted interior areas of concern exposing interior wall cavity framing (metal) and underlayment wallboard siding materials present within each of the impacted materials and areas. Upon post mitigation inspection, all remaining exposed building materials associated within the break room areas exhibited no significant staining and/or elevated mold growth following the completion of prescribed - physical material removal and chemical decontamination procedures performed by JLS within each impacted area. - 7. At the time of our site inspection and clearance sampling assessment performed within the noted Men's and Women's restroom of the 22nd floor on June 2nd, 2008 ambient outdoor conditions both prior to and following our interior assessment activities consisted of clear and mild conditions with an outdoor temperatures range between 66 and 72 degrees F and relative humidity measured at 30-33 %. Predominant winds were noted at approximately 0-5 knots from the southwesterly direction at the time of our assessment. Interior environmental conditions within the sampled break room areas consisted of a temperature range between 75-80 degrees F with relative humidity range of 28 to 30 percent. - 8. At the time of these restroom assessment activities, the observed interior containment barrier systems were verified as established and maintained in accordance with BioMax's referenced protocols. Specific detail as noted on the "as built" construction site floor diagram documents may be reviewed by JLS for further reference as necessary. BioMax previously performed regular and periodic inspections and review of records/conditions within and surrounding the noted containment areas during mitigative activities. A review of such areaspecific information has indicated a preponderance of evidence indicating that the current protective systems have provided appropriate control barriers for the duration and performance of the noted mitigative effort. - 9. During our post mitigation inspection within the 22nd floor Men's and Women's restroom containment systems, BioMax noted the absence of visible interior indications of elevated residual moisture and/or microbial indicators within the remaining exposed interior walls, wall framing, and wall cavities following the performance of mitigative measures. Utilization of a TraMex hand-held inductive moisture meter indicated normal moisture content within all remaining walls and building materials inspected within the sampled containment areas at the time of our assessment. - 10. As noted within the previously referenced assessment reports, the majority of affected areas of visible moisture damage previously identified within the noted men's restroom area primarily consisted of moisture staining and confirmed mold damaged cabinetry and wallboard materials. According to BioMax's review of current evidence and available historical data, it is BioMax's opinion that such material damage was likely caused by a history of chronic plumbing deficiencies and water release events over an extended period of time. - 11. The establishment of containment system barriers encompassing the interior affected areas were observed and verified under appropriate posting and negative pressure differential at the time of this post mitigation assessment. Worker and equipment entry and exit chambers comprised of a series of zippered plastic access doorways were also observed attached to the noted containment barrier systems consistent with BioMax's previously referenced mitigation protocols. - 12. Based on the specific procedural recommendations, all identified affected interior wallboard building materials had been removed from each of the noted interior areas of concern exposing interior wall cavity framing (metal) and underlayment wallboard siding materials present within each of the impacted materials and areas. Upon post mitigation inspection, all remaining exposed building materials associated within the men's restroom exhibited no significant staining and/or elevated mold growth following the completion of prescribed physical material removal and chemical decontamination procedures performed by JLS within each impacted area. - 13. Digital images and schematic records have been developed and maintained by JLS for the duration the performance of these mitigative removal activities indicating the extent and areas where visible staining and/or mold like indicators have been identified within the exposed wall cavities and wall cavity underlayment materials and subsequently removed within each containment area. Such records may be provided by JLS for additional review upon request. - 14. Following the completion of visual inspections within each of these containment areas, BioMax collected series airborne samples within and outside the containment systems noted below for subsequent comparative analysis. Such samples collected within and surrounding each the interior containment system were performed in an effort to identify and quantify the presence of potential airborne mold spores present within (and surrounding) the containment systems following the completion of the prescribed mitigative effort. Findings associated with these sampling activities are noted below. - 15. BioMax also collected a series of digital images during these post mitigative inspection and sampling assessment activities to document the conditions and significant site observations gathered at this time. Such images are provided as an attachment to this summary report for further reference, as necessary. # SAMPLING PROCEDURES 12:35 PROCEDURES 12:35 PROCEDURES 12:35 PROCEDURES 12:35 PROCEDURES 12:35 PROCEDURES 12:35 On-site inspection and sampling assessment activities were conducted by Mr. Michael A. Polkabla, CIH, REA, of BioMax Environmental within the noted break rooms and 22nd floor men's restroom areas on May 21st and June 2nd, 2008, respectively. All sampling equipment, supplies, calibration materials, and collection media were provided by BioMax as part of the performance of this scope of work. Sample collection procedures and methods were performed using standard industrial bygiene sampling methods following techniques prescribed by the contracted analytical laboratory. # Spore Trap Airborne Microbial and Particulate Sampling: The collection of airborne Spore Trap microbial samples was achieved using Zefon Air-O-Cell sampling cassette collection devices placed in each of the areas identified in the tables below. Airborne Spore Trap samples were collected within and outside each of the containment area locations at a height of approximately four feet above ground level using a tripod mounted Quick Take 15 air sampling pump manufactured by SKC. Samples were collected at a calibrated flow rate of 15 liters per minute for a total of five minutes per sample. Resultant total sample volumes, therefore, corresponded to 75 liters collected for each collected sample. Field calibration of the SKC air sampling pump was conducted using a field rotometer devise calibrated with a Bios Drycal primary standard flow meter. All spore trap air sampling and analytical procedures were performed in accordance with prescribed manufacturer guidelines as well as applicable professional certified industrial hygiene indoor air quality microbial investigation procedures and certified industrial hygiene practices. Additional exterior ambient samples were also similarly collected and analyzed in an effort to identify and quantify representative background microbial taxa (types), rank order, and corresponding airborne spore levels present within the ambient environment at the time of this assessment. Sampling collection activities performed during this study included the collection of identifiable airborne microbial contaminants within the representative area locations noted in Tables 1 and 2 below: Table 1. Airborne Spore Trap Sampling Locations of Break Rooms 2202, 2223, and 2224 performed on May 21st, 2008: | Air Sample
Number | Spore I an Più Sampline Eocation | |----------------------|---| | 13810626 | Ambient Pre sample on 4th Floor garage rooftop | | 13811736 | Hallway outside Break Room 2202 (outside containment) | | 13811748 | Break Room 2202 (inside containment) | | 13811732 | Break room 2223 (inside containment) | | 13811918 | Hallway location outside 2210 (outside containment) | | 13811897 | Lactation Room (Employee Lounge) 2224 (inside containment) | |
13811751 | Hallway near 2225 (outside containment) | | 13810549 | Ambient 23 rd Floor North Balcony (damaged during sample collection) | | 13811886 | Ambient 23 rd Floor North Balcony (retest sample) | Table 2. Airborne Spore Trap Sampling Locations of 22^{nd} Floor Men's and Women's Restroom performed on June 2^{nd} , 2008: | Air Samole
Number | | |----------------------|--| | 13811739 | Ambient Pre sample on 4 th Floor garage rooftop | | 13858123 | Ambient 23 rd Floor West Balcony | | 13858084 | Floor 23 at construction Office (outside containment) | | 13858134 | Floor 22 Hallway near Men's Restroom | | 13857975 | Floor 22 Men's Restroom (inside containment) | | 13858085 | Floor 22 Women's Restroom (inside containment) | | 13858068 | Ambient Post at Main Entrance of Building | At the conclusion of sampling activities, preparation and shipping of the collected samples were accomplished in accordance with standard industrial hygiene chain of custody (COC) documentation procedures and quality assurance/quality control practices. Once collected, labeled, and recorded, all samples were double sealed within airtight plastic Ziploc shipping containers and transported via Federal Express Priority Mail to Environmental Microbial Laboratories (EMLabs) in San Bruno, California. EMLabs holds current applicable analytical accreditation and specializes in microbial analytical procedures. Sampling and chain of custody records are provided as an attachment to this letter report for further reference. # ANALYTICAL FINDINGS AND CONCLUSIONS IN THE PROPERTY OF PRO # Airborne Spore Trap Findings Break Rooms 2203, 2223, 2224: Laboratory analytical methods for the identification and enumeration of microbial (mold) taxa and particulate contaminants were conducted in accordance with prescribed analytical procedures and quality control/assurance measures. Original laboratory results including the enumeration of recognizable microbial spore and particulate types are also attached to this letter report for further reference and detail. A summary of airborne Spore Trap microbial (mold) and particulate findings pertaining to each of the subject areas are presented in Table 3 below: Table 3. Airborne Microbial and Particulate Findings - Break Rooms 2202, 2223, 2224. | Process Attourne Microbial and Micro | Total Mote Spores
(Cla/HB) | Backgromad
Deskie | SIGH Cell
Fragments | | |--|-------------------------------|----------------------|------------------------|--| | Ambient Pre sample on 4 th
Floor garage rooftop | 2,737 | 3+ | <1+ | | | Hallway outside Break Room 2202 (outside containment) | 253 | 2+ | 1+ | | | Break Room 2202 (inside containment) | 66 | 2+ | <1+ | | | Break room 2223 (inside containment) | 80 | 2+ | I+ | | | Hallway location outside 2210 (outside containment) | 413 | 2+ | 1+ | | | Lactation Room (Employee
Lounge) 2224 (inside
containment) | 214 | 2+ | I+ | | | Hallway near 2225 (outside containment) | 452 | 2+ | 1+ | | | Ambient 23 rd Floor North
Balcony (damaged during
sample collection) | 2,707 | 3+ | <1+ | | | Ambient 23 rd Floor North
Balcony (retest sample) | 3,189 | 3+ | <1+ | | The analytical findings presented in Table 3 clearly indicate the presence of significantly lower concentrations of microbial (mold) spores measured within each of the interior samples collected both within and surrounding the subject break room containment areas when compared to the levels currently measured within the samples collected from the corresponding ambient outside environment. Analytical findings also indicate similar fungal taxa distribution (mold types) and rank order (predominant taxa) of molds identified within the mitigated areas as well as the adjacent hallway areas sampled (area noted as "Hallway" outside containment). Particularly worthy of note, was the absence of elevated levels of hydrophilic (moisture loving) mold taxa following the performance of mitigative activities within each of the noted containment areas. ## Airborne Spore Trap Findings Men's and Women's Restrooms: Laboratory analytical methods for the identification and enumeration of microbial (mold) taxa and particulate contaminants were conducted in accordance with prescribed analytical procedures and quality control/assurance measures. Original laboratory results including the enumeration of recognizable microbial spore and particulate types are also attached to this letter report for further reference and detail. A summary of airborne Spore Trap microbial (mold) and particulate findings pertaining to each of the subject areas are presented in Table 4 below: Table 4. Airborne Microbial and Particulate Findings - Break Rooms 2202, 2223, 2224 | Table 4. Airborne Microbial and Particulate Findings – Break Rooms 2202, 2223, 2224. | | | | | | | | | | | |--|-------------------|--------------------------------------|-------------------|--|--|--|--|--|--|--| | ILCCAROR Descending | Total Wold Spores | Background
Debus
(scale of 14) | Skil (2) | | | | | | | | | Ambient Pre sample on 4 th
Floor garage rooftop | 1,119 | 3+ | <1+ | | | | | | | | | Ambient 23 rd Floor West
Balcony | 987 | 2+ | <i+< td=""></i+<> | | | | | | | | | Floor 23 at construction Office (outside containment) | 185 | 2+ | 1+ | | | | | | | | | Floor 22 Hallway near Men's
Restroom | 106 | 2+ | 1+ | | | | | | | | | Floor 22 Men's Restroom
(inside containment) | 13 | 2+ | 1+ | | | | | | | | | Floor 22 Women's Restroom (inside containment) | 53 | 2+ | I+ | | | | | | | | | Ambient Post at Main Entrance of Building | 1,545 | 3+ | <1+ | | | | | | | | The analytical findings presented in Table 4 clearly indicate the presence of significantly lower concentrations of microbial (mold) spores measured within each of the interior samples collected both within and surrounding the subject restroom containment areas when compared to the levels currently measured within the samples collected from the corresponding ambient outside environment. Analytical findings also indicate similar fungal taxa distribution (mold types) and rank order (predominant taxa) of molds identified within the mitigated areas as well as the adjacent hallway areas sampled (area noted as "Hallway" outside containment). Particularly worthy of note, was the absence of elevated levels of hydrophilic (moisture loving) mold taxa following the performance of mitigative activities within each of the noted containment areas. Although there are currently no regulatory standards or limits pertaining to allowable airborne fungal concentrations (for any mold taxa) present in indoor environments, there is a general consensus among indoor air quality experts that airborne microbial contamination found within "typical healthy" living and working spaces are generally similar in kind and present at levels which are below those found in the corresponding native outside environment. BioMax believes that the absence of elevated moisture, absence of visible staining resultant from moisture and/or residual mold, and relatively fewer total airborne mold levels with typical taxa and rank order distribution following mitigative clean-up activities are consistent with these generally acceptable interior working space conditions. BioMax, therefore, believes that these findings provide reasonable evidence indicating that current microbial removal and clean-up measures have successfully removed and contained mold contamination within the above noted mitigated areas and materials to normal representative levels. Based on these findings, BioMax believes that the current physical site conditions present within each of the mitigated break room and restroom areas may be considered acceptable in meeting both the visual and analytical clearance criteria established for
these activities. As such, BioMax's review and interpretation of the collected analytical data associated with each of the noted containment areas has been shown to meet the previously referenced clearance criteria established for these activities. Such clearance criteria has been presented in BioMax's Post Mitigation Clearance Assessment Protocols dated February 15th, 2008, and has been reviewed and approved by BOE's environmental consultant, HTI. Therefore, BioMax believes that the verified achievement of such criteria supports BioMax's determination and conclusion that the noted break room and restroom areas may be considered acceptable for reconstruction at this time. ### Airborne Particulate Findings: Analytical particulate findings also sampled and analyzed as part of this assessment identified, what BioMax believes to be, "unremarkable" levels present within the collected air samples. Such findings within and surrounding the noted containment areas also provide reasonable evidence indicating that current particulate clean-up and mitigative control measures have successfully controlled and contained particulate debris within the identified containment areas to acceptable post mitigation clean-up levels. # RECOMMENDATIONS Based on BioMax's post mitigation assessment findings and conclusions presented in this report, BioMax believes that the current airborne microbial levels sampled and analyzed from within break rooms 2202, 2223, 2224 as well as 22nd Floor Men's and Women's Restroom areas provides no significant evidence of elevated residual microbial contamination or airborne contamination/migration following the completion of the prescribed microbial mitigative measures. BioMax understands that parallel airborne and surface assessment sampling performed within each of these containment areas by BOE's consultant, HTI, also indicated acceptable airborne and surface microbial levels following the completion of the mitigative effort. Hence, based on current site observations, field measurements, and review of all findings (both BioMax's and HTI's) at this time, BioMax believes that the mitigated areas of the noted containment areas may be considered acceptable for general reconstruction following prudent reconstruction practices. Therefore, based on our professional review and interpretation of these current referenced findings, BioMax provides the following recommendations for consideration as discussed below: - 1. BioMax believes that current airborne microbial (mold) levels and mold taxa (types) identified within Break Rooms 2202, 2223, and 2224 as well as the Men's and Women's Restroom areas are currently consistent with generally acceptable conditions and industry standard parameters following the performance of the mitigative activities noted. Hence, BioMax recommends that no further airborne and/or surface microbial sampling activities are warranted within the specific noted containment areas and that the containment systems may be deactivated and considered as "acceptable" for reconstruction at this time. - 2. During the performance of interior reconstruction activities, BioMax recommends that a qualified and experienced building inspector/contractor be utilized to verify the current compliance and functional integrity of all applicable building related plumbing, flashing, sealing, and drainage systems in accordance with current building codes and construction practices. Any identified deficiencies should be appropriately documented, corrected, and functionally verified (tested) prior to subsequent reconstruction. Certainly, the establishment and/or installation of any additional corrective measures or engineering controls (as identified through additional professional engineering consultation) should also be performed and implemented in accordance with applicable standards, building codes, and ordinances, as appropriate. - 3. BioMax recommends that reconstruction of interior structural building materials within these areas should only be undertaken utilizing high quality, visibly clean (hand selected) construction grade building materials obtained from reputable commercial sources and which are verified through visual assessment to be free from elevated microbial contamination and/or elevated moisture content. Building materials, which are notably moist and/or visibly stained, should not be used during the reconstruction undertaken within the subject building. - BioMax also recommends that current plastic barriers (as established during this mitigative activity) should remain during any reconstruction activity so as to minimize the potential transmission of associated nuisance construction dust and debris as desired. - 5. Reasonable additional assessment and investigative measures may also be required upon the identification of new or previously undiscovered materials and/or information related to moisture/microbial impacts within the noted structures and/or areas, as necessary. Any occurrence and/or re-occurrence of moisture intrusion following reconstruction within these areas should also be reviewed and addressed through additional professional consultation, as Mulus a Jollac necessary. BioMax is certainly prepared to provide such professional consultation pertaining to these and any follow-up investigative measures upon request. BioMax believes that the conclusions and recommendations provided above are consistent with standard industry microbial mitigative practices and prudent industrial hygiene hazard control and assessment methods. Please do not hesitate to contact me directly at (510) 724-3100 if you have any questions, comments, and/or require further assistance regarding this subject matter. OF INDU- Sincerely, Michael A. Polkabla, CIH, REA Vice President, Principal # Please note that the professional opinions presented in this review are intended for the sole use of the California State Department of General Services (DGS) and their designated beneficiaries. No other party should rely on the information contained herein without the prior written consent of BioMax Environmental and DGS. The professional opinions provided herein are based on BioMax's review and understanding of current site information and observed site conditions present within the areas inspected at the time these services were performed. Professional recommendations provided as part of this limited scope of work are intended for client consideration only and are not intended as a professional or regulatory mandate. Implementation of any of the above measures or recommendations does not, in any way, warrant the day-to-day health and/or safety of building occupants, residents, site workers, nor regulatory or building code compliance status during normal and changing environmental conditions. As microbial contamination, by nature, may change over time due to additional moisture intrusion, favorable growth conditions, and changing environments, the findings of this report are subject to change in the event that such conditions and/or environments arise. Also, the professional opinions expressed here are subject to revision in the event that new or previously undiscovered information is obtained or uncovered. The information contained in this and any other applicable communication is for consideration purposes only. It is not intended, nor should it be construed as providing legal advice or warranting any level of safety or regulatory compliance. The sole purpose of such information is to assist with the anticipation, identification, evaluation and control of elevated and/or unnecessary health of physical hazards. Any action taken based on this information, including but not limited to opinions, suggestions and recommendations, whether implied or expressed, is the sole responsibility of the individual taking the action. The management of acceptable health and safety is criteria dependent and situation specific in nature, therefore requiring extensive knowledge and prudent value assessments so as to be properly determined and maintained. These services were performed by BioMax in accordance with generally accepted professional industrial hygiene principals, practices, and standards of care. Under the existing Industrial Hygiene Definition and Registration Act, all reports, opinions or official documents prepared by a Certified Industrial Hygienist (CIH) constitutes an expression of professional opinion regarding those facts or findings which are subject of a certification and does not constitute a warranty or guarantee, either expressed or implied. Attachment A: Digital Images May 21st, 2008 Assessment BOE 22nd Floor Break Room 2202, 2223, and 2224 Clearance Sacramento, CA Page 1 of 11 Click here for color photos 1) Image of ambient air sampling location at rooftop of garage structure adjacent to the BOE building (Subject Building) located at 450 N Street, Sacramento. 2) Image of air sampling equipment located within hallway of 22nd Floor near 2202 break room containment. May 21st, 2008 Assessment BOE 22nd Floor Break Room 2202, 2223, and 2224 Clearance Sacramento, CA 3) Image of wall removal delineation and air sampling activity performed within Break Room 2202 at time of assessment. 4) Image of adjacent wallboard removal delineation performed within Break Room 2202 as part of mitigative activity. May 21st, 2008 Assessment BOE 22nd Floor Break Room 2202, 2223, and 2224 Clearance Sacramento, CA 5) Image of BioMax and HTI air sampling equipment oriented within Break room 2223 at time of assessment. 6) Image of wallboard removal delineation performed within 2223 at time of assessment. May 21st, 2008 Assessment BOE 22nd Floor Break Room 2202, 2223, and 2224 Clearance Sacramento, CA 7) Additional perspective image indicating extent of wallboard removal performed within break room 2223 as part of the mitigative activity. Image of wallboard removal delineation performed within Employee Lounge (Break Room 2224) as part of the
mitigative efforts. May 21st, 2008 Assessment BOE 22nd Floor Break Room 2202, 2223, and 2224 Clearance Sacramento, CA Page 5 of 11 9) Image of baseboard removal performed within 2224 at structural support chase area. No visual indications of staining were observed at the time of assessment. 10) Image of air sampling activity performed in hallway adjacent to 2223 and 2224 containment areas. May 21st, 2008 Assessment BOE 22nd Floor Break Room 2202, 2223, and 2224 Clearance Sacramento, CA 11) Image of ambient air sample location on 23rd floor northern balcony following the sample collection of interior samples. June 2nd, 2008 Assessment BOE 22nd Floor Men's and Women's Restroom Sacramento, CA 12) Image of air sampling performed within hallway near men's restroom area at time of assessment. 13) Image of wallboard removal and exposed plumbing within men's restroom area following mitigative activity. June 2nd, 2008 Assessment BOE 22nd Floor Men's and Women's Restroom Sacramento, CA 14) Close up image of paper towel chase and interior plumbing systems located to the right of sink area within men's restroom following mitigative activity. 15) Close-up image of wall surface behind right-side paper towel cavity. Noted absence of elevated staining present on wall surface leading to elevator shaft. June 2nd, 2008 Assessment BOE 22nd Floor Men's and Women's Restroom Sacramento, CA 16) Close up image of exposed plumbing and metal framing located at sink area within men's restroom following mitigative removal. 17) Close-up image of wallboard material to left side of prior sink cabinet location. Absence of elevated staining present on wallboard adjacent to elevator shaft system. June 2nd, 2008 Assessment BOE 22nd Floor Men's and Women's Restroom Sacramento, CA 18) Image of BioMax and HTI air sampling activities performed within women's restroom containment area at time of assessment. 19) Image of plumbing structures and underlayment materials within women's restroom containment area at time of assessment. June 2nd, 2008 Assessment BOE 22nd Floor Men's and Women's Restroom Sacramento, CA 20) Close up image of exposed wallboard material to right of prior sink cabinet location of women's restroom. Absence of elevated staining noted on wall surface. 21) Image of "paper towel" cavity to left of prior sink within women's restroom area. Absence of elevated staining noted on underlayment wall surface adjacent to elevator shaft. Report for: Mr. Michael Polkabla Biomax Environmental 775 San Pablo Ave. Pinole, CA 94564 Regarding: Project: 052108-01; 450 N. Street, Sacramento, CA., 22nd Floor, Breakrooms EML ID: 425101 Approved by: Lab Manager Magzoub İşmail Dates of Analysis: Spore trap analysis: 05-23-2008 Project SOPs: Spore trap analysis (I100000) This coversheet is included with your report in order to comply with AIHA and ISO accreditation requirements. For clarity, we report the number of significant digits as calculated; but, due to the nature of this type of biological data, the number of significant digits that is used for interpretation should generally be one or two. All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank corrections of results is not a standard practice. The results relate only to the items tested. EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor. Document Number: 200091 - Revision Number: 5 4401 Atlantic Avenue, Suite 200, Long Beach, CA 90807 (858) 569-5800 Fax (858) 569-5806 www.emlab.com Client: Biomax Environmental C/O: Mr. Michael Polkabla Re: 052108-01; 450 N. Street, Sacramento, CA., 22nd Floor, Breakrooms Date of Sampling: 05-21-2008 Date of Receipt: 05-22-2008 Date of Report: 05-23-2008 ### SPORE TRAP REPORT: NON-VIABLE METHODOLOGY | Location: | | 10626: | | 11736: | 1383 | 1748: | 138 | 11732: | 138 | 11918: | |---------------------------------|---------|-----------------------|---------|-----------|---------|-----------|---------|-----------|--------------|-----------| | | | ient pre- | | way at | | kroom | | kroom | | lway | | | | floor | | outside | | 2, in | | 23, in | | tside | | | | rage
loor | C | ont. | conta | inment | conta | inment | 2210, | out cout. | | Comments (see below) | N | one | N | lone N | | one | None | | None | | | Lab ID-Version‡: | 186 | 1869094-1 | | M95-1 | 1869 | 9096-1 | 1869 | 9097-1 | 1869098-1 | | | | raw ct. | грогс в/m3 | raw ct. | spores/m3 | | Alternaria | 3 | 40 | | | • | | | | | | | A <u>rthrinium</u> | | | | | | | | | | | | Ascospores* | 3 | 40 | | | | | | | | | | Aureobasidium | | | | | | | | | | | | Basidiospores* | 2_ | 67 | | | | | 2 | 27 | 2 | 27 | | Bipolaris/Drechslera group | | | | | | | | | | | | Chaetomium | 2 | 27 | | | _ | | | | | | | Cladosporium | 26 | 1,390 | 2 | 107 | | | | | 1 | 53 | | Curvularia | | | | | | | | | " | | | Epicoccum_ | | | , | | | | | | 1 | 13 | | Fusarium | | | | | | | | | - | | | Nigrospora | 3 | 40 | | | | · | | | | | | Oidium | | | | | | | | | | | | Other brown | | | | | | | | | | | | Penicillium/Aspergillus types† | 7 | 373 | 1 | 53 | 1 | 53 | | | 3 | 160 | | Pithomyces | | | | | | | | | ~ | | | Rusts* | 1 | 13 | 1 | 13 | | | | | | | | Smuts*, Periconia, Myxomycetes* | 56 | 747 | 6 | 80 | 1 | 13 | 4 | 53 | 12 | 160 | | Stachybotrys | | | | | _ | | | | 111 | | | Stemphylium | | | | | | | | | | | | Torula | | | | | | | | | | | | Ulocladium | | | | • | | | | | | | | Background debris (1-4+)†† | 3+ | | 2+ | | 2+ | | 2+ | ******* | 2+ | | | Hyphal fragments/m3 | 53 | . , | < 13 | | 13 | | < 13 | | 13 | | | Pollen/m3 | 80 | | < 13 | | 13 | | < 13 | | 27 | | | Skin cells (1-4+) | < 1+ | | _1+ | | < 1+ | | 1+ | | 1+ | | | Sample volume (liters) | . 75 | | 75 | | 75 | ********* | 75 | _ | 75 | | | TOTAL SPORE/m3 | | 2,737 | | 253 | | 66 | | 80 | | 413 | ### Comments: ^{*} Most of these spore types are not seen with culturable methods (Andersen sampling), although some may appear as non-sporulating fungi. Most of the basidiospores are musicoom' spores while the rusts and sunt sampling), although some may appear as non-sporulating fungi. † The spores of Aspergillus and Penicillium (and others such as Acremonium, Paccilomyces) are small and round with very few distinguishing characteristics. They cannot be differentiated by non-viable sampling methods. Also, some species with very small spores are easily missed, and may be undercounted. The language deprise indicates the amount of non-biological particulate matter present on the trace (dust in the air) and the resulting visibility for the analyst. It is rated from 1+ (low) to 4+ (high). Counts from areas with 4+ background debris should be regarded as minimal counts and may be higher then reported. It is important to account for samples volumes when evaluating dust levels. The Limit of Detection is the product of a raw count of 1 and 100 divided by the percent read. The analytical sensitivity (counts/m3) is the product of the Limit of Detection and 1000 divided by the sample volume. ‡ A "Version" greater than 1 indicates amended data. 4401 Atlantic Avenue, Suite 200, Long Beach, CA 90807 (858) 569-5800 Fax (858) 569-5806 www.emlab.com Client: Biomax Environmental C/O: Mr. Michael Polkabla Rc: 052108-01; 450 N. Street, Sacramento, CA., Floor, Breakrooms Date of Sampling: 05-21-2008 Date of Receipt: 05-22-2008 Date of Report: 05-23-2008 SPORE TRAP REPORT: NON-VIABLE METHODOLOGY | Location: | | 11897:
ion room | | 11751: | | 10549: | | 11886: | |---------------------------------|-----------|--------------------|---------|------------------------|----------------|--|--|---| | | | , in cont. | Dalles | y at 2225,
de cont. | 23m;
balcon | floor, N.
ny/fallen | 23m 10 | or, reta ke/
balc on v | | | ', | | Outo | de cont | | ipod | 25 14. balcony | | | Comments (see below) | 1 | Vonc | ľ | None | | Vonc | None | | | Lab ID-Version‡: | 1869099-1 | | 186 | 9100-1 | 186 | 9101-1 | 1869102-1 | | | | raw ct. | spores/m3 | raw ct. | spores/m3 | raw ct. | spores/m3 | raw ct. | spores/m? | | Alternaria | | | | 13 | 3 | 40 | 3 | 40 | | Arthrinjum | | | | | | | | | | Ascospores* | | | | | 3 | 160 | 3 | 40 | | Aureobasidium | | | | | , | | | | | Basidiospores* | | | 1 | 13 | 5 | 107 | | | | Bipolaris/Drechslera group | | 1 | | | | | | | | Chaetomium | | | | | 1 | 13 | 1 | 13 | | Cladosporium | 1 | 53 | 4 | 213 | 27 | 1,440 | 32 | 1,710 | | Curyularia | | | | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1 | 13 | | Epicoccum | | | | | | | ī | 13 | | Fusarium | | | | | | | | | | Nigrospora | | | • " | | | | | | | Oidium | | | | | 3 | 40 | ************************************** | | | Other brown | 2 | 27 | | | 2 | 27 | 1 | 13 | | Penicillium/Aspergillus types† | 2 | 107 | 1 | 53 | 3 | 160 | 2 | 107 | | Pithomyces | | | | | | 1 | | | | Rusts* | | | 2 | 27 | | | | | | Smuts*, Periconia, Myxomycetes* | 2 | 27 | 10 | 133 | 53 | 707 | 87 | 1,160 | | Stachybotrys | | | | | | | <u> </u> | | | Stemphylium | | | | | 1 | 13 | ī | 13 | |
Torula | | | | | | | 5 | 67 | | <u>Ulocladium</u> | | | | | • • • • | | | | | Background debris (1-4+)++ | 2+ | | 2+ | | 3+ | | 3+ | | | Hyphal fragments/m3 | < 13 | | 13 | | 213 | | 173 | | | Pollen/m3 | 13 | | 13 | 1 | 480 | | 747 | | | Skin cells (1-4+) | 1+ | | 1+ | | < 1+ | | < 1+ | | | Sample volume (liters) | 75 | | 75 | | 7 5 | | 75 | - | | TOTAL SPORE/m3 | | 214 | | 452 | | 2.707 | | 3.189 | | Comments: | | | | | | | | | ^{*} Most of these spore types are not seen with culturable methods (Anderson sampling), although some may appear as non-sportlating fungi. Most of the basidiospores are "mushroom" spores while the rusts and smuts are plant pathogens. † The spores of Aspergillus and Penicillium (and others such as Acremonium, Paccilomyces) are small and round with very few distinguishing characteristics. They cannot be differentiated by non-viable sampling methods. Also, some species with very small spores are easily missed, and the first of Detection is the product of a raw count of 1 and 100 divided by the percent read. The snallytical sensitivity (counts/m3) is the product of the Limit of Detection and 1000 divided by the sample volume. † A "Version" greater than 1 indicates amended data. **EMLab ID: 425101, Page 2 of 4401 Atlantic Avenue, Suite 200, Long Beach, CA 90807 (858) 569-5800 Fax (858) 569-5806 www.emlab.com Client: Biomax Environmental C/O: Mr. Michael Polkabla Re: 052108-01; 450 N. Street, Sacramento, CA., 22nd Floor, Breakrooms Date of Sampling: 05-21-2008 Date of Receipt: 05-22-2008 Date of Report: 05-23-2008 ### MoldRANGE™: Extended Outdoor Comparison Outdoor Location: 13810626, Ambient pre-4th floor garage floor | Fungl Identified | Outdoor | Typic | al Ontdo | or Data by | Datef | Typical Outdoor Data by Location‡ State: CA | | | | |---------------------------------|-----------|-------|----------|------------|--------|---|-----|-------|--------| | | data | | Mont | h: May | | | | | | | | spores/m3 | low | med | high | freq % | low | med | high | freq % | | Generally able to grow indoors* | | | | | | | | | 1 1 | | Alternaria | 40 | 7 | 33 | 320 | 62 | 7 | 27 | 230 | 60 | | Bipolaris/Drechslera group | - | 7 | 13 | 120 | 16 | 7 | 13 | 120 | 14 | | Chactomium | 27 | 7 | 13 | 100 | 15 | 7 | 13 | 110 | 19 | | Cladosporium | 1,390 | 53 | 530 | 6,900 | 96 | 53 | 640 | 6,400 | 98 | | Curvularia | - | 7 | 13 | 360 | 8 | 7 | 13 | 210 | 7 | | Nigrospora | 40 | 7 | 13 | 120 | 7 | 7 | 13 | 170 | 8 | | Penicillium/Aspergillus types | 373 | 27 | 160 | 1,700 | 80 | 40 | 210 | 2,500 | 88 | | Stachybotrys | - | 7 | 13 | 230 | 4 | 7 | 13 | 300 | 5 | | Torula | - | 7 | 13 | 170 | 15 | 7 | 13 | 150 | 13 | | Seldom found growing indoors** |] | | | -,- | | • | 15 | 120 | 1.5 | | Ascospores | 40 | 13 | 160 | 5.300 | 81 | 13 | 110 | 1,800 | 72 | | Basidiospores | 67 | 13 | 270 | 6.900 | 93 | 13 | 240 | 6,700 | 94 | | Rusts | 13 | 7 | 25 | 330 | 29 | 7 | 13 | 270 | 29 | | Smuts, Periconia, Myxomycetes | 747 | 7 | 53 | 1,000 | 76 | 8 | 40 | 470 | 71 | | TOTAL SPORES/M3 | 2,737 | · · | | .,,,,,,,, | | | | 770 | /1 | [†] The Typical Outdoor Data by Date represents the typical outdoor spore levels across North America for the month indicated. The last column represents the frequency of occurrence. The low, medium, and high values represent the 2.5, 50, and 97.5 percentile values of the spore type when it is detected. For example, if the frequency of occurrence is 63% and the low value is 53, it would mean that the given spore type is detected 63% of the time and, when detected, 2.5% of the time it is present in levels above the detection limit and below 53 spores/m3. These values are updated periodically, and if enough data is not available to make a atmistically meaningful assessment, it is indicated with a dash. Interpretation of the data contained in this report is left to the client or the persons who conducted the field work. This report is provided for informational and comparative purposes only and should not be telied upon for any other purpose. "Typical outdoor data" are based on the results of the analysis of samples delivered to and analyzed by BMLab P&K and assumptions regarding the origins of those samples. Sampling tecluiques, contaminants infecting samples, unrepresentative samples and other similar or dissimilar factors may affect these results. In delition, EMLab P&K may not have received and tested a representative number of samples for every region or time period. EMLab P&K hereby disclaims any liability for any and all direct, indirect, punitive, incidental, special or consequential damages arising out of the use or interpretation of the data contained in, or any actions taken or omitted in reliance upon, this report. [†] The Typical Outdoor Data by Location represents the typical outdoor spore levels for the region indicated for the entire year. As with the Typical Outdoor Data by Date, the four columns represent the frequency of occurrence and the typical low, medium, and high concentration values for the spore type indicated. These values are updated periodically, and if enough data is not available to make a statistically meaningful assessment, it is indicated with a dash. [&]quot;The spores in this category are generally capable of growing on wet building materials in addition to growing outdoors. Building related growth is dependent upon the fungal type, moisture level, type of material, and other factors. Cladosportum is one of the predominant spore types worldwide and is frequently present in high numbers. Pentallitum/Aspergillus species colonize both outdoor and indoor wet surfaces rapidly and are very easily dispersed. Other genera are usually present in lesser numbers. ^{**}These fungi are generally not found growing on wet building materials. For example, the rusts and anuts are obligate plant pathogens. However, in each group there are notable exceptions. For example, agents of wood decay are members of the basidiomycetes and high counts of a single morphological type of basidiospore on an inside sample should be considered significant. PAGE 30 EMLab P&K 4401 Atlantic Avenue, Suite 200, Long Beach, CA 90807 (858) 569-5800 Fax (858) 569-5806 www.emlab.com # SPORE TRAP REPORT: NON-VIABLE METHODOLOGY 05-23-2008: 052108-01 Note: Graphical cutput may understate the importance of certain "marker" genera. EMLab ID: 425101, Page 1 BIOMAX ENVIRONMENTAL 4401 Atlantic Avenue, Suite 200, Long Beach, CA 90807 (858) 569-5800 Fox (858) 569-5806 www.emlab.com EMLab P&K 05-23-2008; 052108-01 Note: Graphical output may understate the importance of certain "marker" genera. EMLab ID: 425101, Page 2 # MICROBIAL SPORE TRAP AIR SAMPLING RECORD 000425101 Page_/ of / BioMax Environmental 775 San Pablo Ave. Pinole, CA 94564 www.hicamaenvironmental.com Phone: (510) 724-3100 (510) 724-3145 Fax: biomaxenv@aol.com Location: 450 N Street Socrements, CA ZZND Floor Book Date: 5/21/08 Collected by: M. A. Polkeda, CH Signature: Client: DGS Project#: 052/08 -01 Laboratory: Emiles Son Bruno Reg. Turn Around: 24 AC Analysis: Fungal Particulate ID | KENT THE THE RES | in a superior | : Bossellanmana | with Quant | fication. | |--------------------------|-----------------------|----------------------------------|-----------------------|-----------| | | | | with Quant | | | 13810626 | 0812 | A-bient ; | he - 41th Floorberg | 62 /30% | | 138/1736 | 0850 | | 2702 (outside cat) | | | 13811748 | 0905 | Brede Room | 2202 (m Continum | 185 /29% | | 13811732 | OFFO | Break Ron | 2223 (In cont | Sto / 26% | | 13811918 | 2890 | Holling as | deally 2210 (out cas | 12/2/2 | | 138/1897 | 0945 | Lactotion R | - 55561 (in cont.) | 82/77% | | 1381751 | 0955 | Hallway co | 2725 (outside cont.) | 82/278 | | 13810549 | 1005 | 23rd Floor A | 1. Bolomy/ fille-Trip | 77 /274 | | 1387/886 | 1010 | 23 rd Floor | Retoke / N Ballay | 76 /26% | | | | | | | | (min): | Flow Rata
(Vizin): | Total Sample
Volume (liters): | Ambient Conditions: | Comments: | | | 15 l/m | TSI. | 10-15 MPH NIN | | | Please sign this form be | clow acknow | printer compile | | <u> </u> | acknowledging sample receipt and return executed form with laboratory reports. Fax, send, e-mail results to BioMax Environmental at (510) 724-3145 blomaxenv@sol.com Fingel 10 my Qual - 24HR Tun Arang Relinquished by: Time/Date Sent: Method of Transportation: Feel Ex 4100 5/21/08 Received By: Teme/Date Received: 5-22-08 BioMax Environmental, LLC PAGE Thu Jun 5 15:25:22 2008 Page 1 of 4 33 EMLab P&K 1150 Bayhill Drive, Suitc 100, San Bruno, CA 94066 (650) 829-5800 Fax (650) 829-5852 www.emlab.com Client: Biomax Environmental C/O: Mr. Michael Polkabla Re: 060208-01 Date of Sampling: 06-02-2008 Date of Receipt: 06-04-2008 Date of Report: 06-05-2008 ### SPORE TRAP REPORT: NON-VIABLE METHODOLOGY | Location: | 138 | 11739: | | 58123: | 138 | 58084: | 13858134: | | | |---------------------------------|-------------------|-----------------|------------------|-------------|---------------|-------------|-------------|-------------|--| | | | nt garage, | | ent, 23rd | Floor 2 | 3, hallway | | 2, hallway | | | | 411 | top
1 floor | floor, W | est balcony | | at | near MRR | | | | Comments (see below) | | i tioor
Yone | | T . | | t office | <u> </u> | | | | Lab ID-Version±: | *1. | | None | | | Vone | None | | | | TTO TTY A SEZIODIT: | - | 8256-1 | | 8257-1 | 188 | 8258-1 | 188 | 8259-1 | | | A14 | raw ct. | | | spores/m3 | _raw_ct_ | sporcs/m3 | raw ct. | spores/m3 | | | Alternaria | - | 13 | 3 | 40 | | | | j | | | Arthrinium | <u> </u> | | | | | | | , | | | Ascospores* | | | 2 | 107 | 1_ | 53 | | i | | | Aureobasidium | <u> </u> | | ~~~ | | | | · | | | | Basidiospores* | 2 | 107 | 2 | 107 | | i i | 1 | 53 | | | Bipolaris/Drechslera group | | | | | | | | | | | Botrytis | | | | | , | | | | | | Chaetomium | | | 1 | 13 | | | | , | | | Cladosporium | 16 | 853 | 11 | 587 | _ 1 | 53 | | ·— | | |
Curvularia | | | | 9.37 | | | | | | | Ерісоссит | | | | | | | | | | | Fusarium | , | | | | | | | | | | Myrothecium | | 711 | | | | | | | | | Nigrospora | • | | | _· | | **** | | | | | Oidium | **1*** | | | | | | • | | | | Other brown | | | 7 1 | 13 | | | | | | | Penicillium/Aspergillus types† | 2 | 107 | | 53 | | 53 | | | | | Pithomyces | ,, | | | | ٨ | 23 | l | 53 | | | Rusts* | 1 | 13 | · | <u></u> | 4 | | | | | | Smuts*, Periconia, Myxomycetes* | | 13 | 5 | 67 | | 13 | - | | | | Stachybotrys | | <u> </u> | <u></u> | - 10 | \ | 13 | | | | | Stemphylium | | | | | | | <u>-</u> | | | | Torula | 1 | 13 | | | | | | | | | Ulocladium | 1 | | | | | | | *********** | | | Background debris (1-4+)†† | <u>3</u> + | | 7. | | | | | | | | Hyphal fragments/m3 | 3+ | | 2+ | | 2+ | | _2+ | | | | Pollen/m3 | 53 | | $-\frac{27}{27}$ | | < 13 | | < 13 | | | | Skin cells (1-4+) | | | 27 | | <u><13</u> | | <u>_53</u> | | | | Sample volume (liters) | <u>< 1+</u> 75 | | < 1+ | | 1 <u>+</u> | | . 1+ | | | | TOTAL SPORE/m3 | /> | | 75 | | 75 | | 75 | | | | Comments: | | 1.119 | | 987 | | 185 | i | 106 | | Comments: A "Versitm" greater than I indicates amended data. [&]quot;Most of these spore types are not seen with culturable methods (Andersen sampling), although some may appear as non-spoulating fungi. Most of the basidiospores are "mushroom" spores while the rusts and smuts are plant pathogens. † The spores of Aspergillus and Penicillum (and others such as Acremonium, Paccillonness) are small and round with very few distinguishing characteristics. They cannot be differentiated by non-viable sampling methods. Also, some species with very small spores are easily missed, and may be underconnect. † Background debris indicates the amount of non-biological particulate matter present on the trace (dust in the air) and the resulting visibility for the analyst. It is rated from 1+ (low) to 4+ (high). Counts from areas with 4+ background debris should be regarded as minimal counts and may be higher then reported. It is important to account for samples volumes when evaluating dust levels. The Limit of Detection is the product of a raw count of 1 and 100 divided by the percent read. The analytical sensitivity (counts/m3) is the product of the Limit of Detection and 1000 divided by the sample volume. From EML, Inc. Thu Jun 5 15:25:22 2008 Page 2 of 4 EMLab P&K 1150 Bayhill Drive, Suite 100, San Bruno, CA 94066 (650) 829-5800 Fax (650) 829-5852 www.emlab.com Client: Biomax Environmental C/O: Mr. Michael Polkabla Re: 060208-01 Date of Sampling: 06-02-2008 Date of Receipt: 06-04-2008 Date of Report: 06-05-2008 SPORE TRAP REPORT: NON-VIARLE METHODOLOGY | | Floor 22, 1 | 357975:
men's restroom | Floor 2 | 558085;
2, women's
stroom | 13858068:
Ambient post at main
entry
N | | | |---------------------------------|----------------|---|---------------------------------------|---|---|-----------|--| | Comments (see below) | None | | ı | Vone | None | | | | Lab ID-Version‡: | 188 | 88260-1 | 188 | 8261-1 | | 8262-1 | | | | raw ct. | spores/m3 | raw ct. | spores/m3 | raw ct. | spores/m3 | | | Alternaria | | | | Spot Gin 2HO | 1 | 13 | | | <u>Arthrinium</u> | } | | · · · · · · · · · · · · · · · · · · · | | | 13 | | | Ascospores* | | | | | 1 | 53 | | | Aureobasidium | | | . 144 | | ·1 | | | | Basidiospores* | 71 | 1 | | | 5 | 267 | | | Bipolaris/Drechslera group | 7 | | | 7 | | 207 | | | Borrytis | | - | | | | | | | Chaetomium | | | | 74. | | | | | Cladosporium | | | 1 | 53 | 21 | 1.120 | | | Curvularia | | | | | | 1.120 | | | Epicoccum | | | | | | | | | <u>Fusarium</u> | | | | | | | | | Myrothecium | | | | | *************************************** | | | | Nigrospora | | | , | | | | | | Oidium | | | *** | | 1 | 13 | | | Other brown | * 100 | | ••• | | A | 1.3 | | | Penicillium/Aspergillus types† | | - | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 | 53 | | | Pithomyces | | *************************************** | | | | | | | Rusts* | | | | | 1 | 13 | | | Smuts*, Periconia, Myxomycetes* | 1 | 13 | | | 1 | 13 | | | Stachybotrys | | 7.5 | - / | | <u> </u> | | | | Stemphylium | | | | 7**** | | | | | Torula | , | | | | | 18.1 | | | Ulocladium | | | | | | | | | Background debris (1-4+)++ | 2+ | | 2+ | | 3+ | | | | Hyphal fragments/m3 | <u>< 13</u> | .74. | < 13 | " | 27 | | | | Pollen/m3 | < 13 | | 13 | | 67 | | | | Skin cells (1-4+) | 1+ | i | 1+ | + | <1+ | | | | Sample volume (liters) | 75 | - | 75 | | 75 | <u> </u> | | | TOTAL SPORE/m3 | | 13 | - 13 | 53 | 1.1 | 1.545 | | ^{*} Most of these spore types are not seen with culturable methods (Andersen sampling), although some may appear as non-sporulating fungi, Most of the basidiospores are "mustroom" spores while the rusts and smuts are plant pathogens. † The spores of Aspergillus and Penicillium (and others such as Acremonium, Paccillonyces) are small and round with very few distinguishing characteristics. They cannot be differentiated by non-viable sampling methods. Also, some species with very small spores are easily missed, and may be undercounted. hits of the Limit of Detection is the product of a raw count of 1 and 100 divided by the percent read. The analytical sensitivity (counts/m3) is the product of the Limit of Detection and 1000 divided by the sample volume. ‡ A "Version" greater than I indicates amended data. From EML, Inc. Thu Jun 5 15:25:22 2008 Page 3 of 4 EMLab P&K 1150 Bayhill Drive, Suite 100, San Bruno, CA 94066 (650) 829-5800 Fax (650) 829-5852 www.emlab.com Client: Biomax Environmental C/O: Mr. Michael Polkabla Re: 060208-01 Date of Sampling: 06-02-2008 Date of Receipt: 06-04-2008 Date of Report: 06-05-2008 ### MoldRANGE™: Extended Outdoor Comparison Outdoor Location: 13858123, Ambient, 23rd floor, West balcony | Fungi Identified | Outdoor | Typic | al Outdo | or Data by | Date† | Typical | Outdoor | Data by I | ocation: | |---------------------------------|-----------|-------|---|------------|----------|-----------|-----------|-----------|----------| | | data | | Mont | h: June | | State: CA | | | | | | spores/m3 | low | med | high | freq % | low | med | high | freq % | | Generally able to grow indoors* | | | *************************************** | | | | · | | 1104 11 | | Alternaria | 40 | 7 | 38 | 390 | 67 | 7 | 27 | 230 | 60 | | Bipolaris/Drechslera group | - | 7 | 13 | 160 | 18 | 7 | 13 | 120 | 1 | | Chaetomium | 1.3 | 7 | 13 | 93 | 17 | 7 | 13 | | 14 | | Cladosporium | 587 | 53 | 640 | 8,300 | 98 | 53 | 640 | 110 | 19 | | Curvularia | | 7 | 13 | 440 | 12 | 7 | 13 | 6,400 | 98 | | Nigrospora | _ | 7 | 13 | 130 | 9 | 7 | 13 | 210 | 7 | | Other brown | 13 | 7 | 13 | 93 | 38 | 7 | | 170 | 8 | | Penicillium/Aspergillus types | 53 | 27 | 210 | 2,000 | 98
84 | 40 | 13 | 80 | 37 | | Stachybotrys | | 7 | 13 | 330 | 4 | 7 | 210
13 | 2,500 | 88 | | Torula | - 1 | 7 | 13 | 140 | 17 | 7 | 13 | 300 | 5 | | Seldom found growing indoors** | | | 1. | 140 | 11 | , | 13 | 150 | 13 | | Ascospores | 107 | 13 | 160 | 6,600 | 80 | 13 | 110 | 1 800 | | | Basidiospores | 107 | 13 | 270 | 14,000 | 93 i | | 110 | 1,800 | 72 | | Oidium | | 7 | 20 | 210 | 26 | 13 | 240 | 6,700 | 94 | | Rusts | | 7 | 20 | 230 | | 7 | 13 | 190 | 20 | | Smuls, Periconia, Myxomycetes | 67 | 11 | 53 | | 31 | 7 | J.3 | 270 | 29 | | TOTAL SPORES/M3 | 987 | | | 1,200 | 82 | <u>8</u> | 40 | 470 | 71 | [†] The Typical Outdoor Data by Date represents the typical outdoor spore levels across North America for the month indicated. The last column represents the frequency of occurrence. The low, medium, and high values represent the 2.5, 50, and 97.5 percentile values of the spore type when it is detected. For example, if the frequency of occurrence is 63% and the low value is 53, it would mean that the given spore type is detected 63% of the time and, when detected, 2.5% of the time it is present in levels above the detection limit and below 53 spores/m3. These values are updated periodically, and if enough data is not available to make a statistically meaningful assessment, it is indicated with a dash. Interpretation of the data contained in this report is left to the client or the persons who conducted the field work. This report is provided for informational and comparative purposes only and should not be relied upon for any other purpose. "Typical outdoor data" are based on the results of the analysis of samples delivered to and analyzed by EMLab P&K and assumptions regarding the origins of those samples. Sampling techniques, contaminants infecting samples, unrepresentative samples and other similar or dissimilar factors may affect these results. In addition, EMLab P&K may not have received and tested a representative number of samples for every region or time period. EMLab P&K hereby disclature any liability for any and all direct, indirect, punitive, incidental, special or consequential damages arising out of the use or interpretation of the data contained in, or any actions taken or omitted in reliance upon, this report. [‡] The Typical Outdoor Data by Location represents the typical outdoor spore levels for the region indicated for the entire year. As with the Typical Outdoor Data by Date, the four columns represent the frequency of occurrence and the typical low, medium, and high concentration values for the spore type indicated. These values are updated periodically, and if enough data is not available to make a statistically meaningful assessment, it is indicated with a dash. [&]quot;The spores in this category are generally capable of growing on wet building materials in addition to growing outdoors. Building related growth is dependent upon the fungal type, moisture level, type of material, and other factors. Cladosporium is one of the predominant spore types
worldwide and is frequently present in high numbers. Penicilium/Aspergillus species colonize both outdoor and indoor wet surfaces rapidly and are very easily dispersed. Other genera are usually present in lesser numbers. ^{**}These fungi are generally not found growing on wet building materials. For example, the rusts and smuts are obligate plant pathogens. However, in each group there are notable exceptions. For example, agents of wood decay are members of the basidiomycetes and high counts of a single morphological type of basidiospore on an inside sample should be considered significant. Re: 060208-01 Client: Biomax Environmental C/O: Mr. Michael Polkabla PAGE 36 Thu Jun 5 15:25:22 2008 Page 4 of 4 EMLab P&K 1150 Bayhill Drive, Suite 100, San Bruno, CA 94066 (650) 829-5800 Fax (650) 829-5852 www.emlab.com Date of Sampling: 06-02-2008 Date of Receipt: 06-04-2008 Date of Report: 06-05-2008 ### MoldRANGE™: Extended Outdoor Comparison Outdoor Location: 13858068, Ambient post at main entry N | Fungi Identified | Outdoor | Туріс | al Outdo | or Data by | Date† | Typical | Outdoor | Data by I | Acations | | |---------------------------------|-----------|-------|----------|----------------------|--------|-----------|---------|--------------|-----------|--| | | data | | Mont | h: June | | State: CA | | | | | | | spores/m3 | low | med | high | freq % | low | med | high | freq % | | | Generally able to grow indoors* | | | | | | · | | **** | 1 1104 /0 | | | Alternaria | 13 | 7 | 38 | 390 | 67 | 7 | 27 | 230 | 60 | | | Bipolaris/Drechslera group | - | 7 | 13 | 160 | 18 | 7 | 13 | 120 | 14 | | | Chaetomium | • | 7 | 13 | 93 | 17 | 7 | 13 | 110 | 19 | | | Cladosporium | 1,120 | 53 | 640 | 8,300 | 98 | 53 | 640 | | ı | | | Curvulacia | - | 7 | 13 | 440 | 12 | 7 | 13 | 6,400
210 | 98
7 | | | Nigrospoca | - | 7 | 13 | 130 | 9 | 7 | 13 | 210
170 | 8 | | | Other brown | - | 7 | 13 | 93 | 38 | 7 | 13 | 80 | 37 | | | Penicillium/Aspergillus types | 53 | 27 | 210 | 2,000 | 84 | 4D | 210 | 2,500 | ł | | | Stachybotrys | - | 7 | 13 | 330 | 4 | 7 | 13 | 300 | 88
5 | | | Torula | - | 7 | 13 | 140 | 17 | 7 | 13 | | | | | Seldem found growing indoors** | | | | ,,,,,, | 1, | , | 13 | 150 | 13 | | | Ascospores | 53 İ | 13 | 160 | ნ,600 | 80 | 13 | 110 | 1.000 | 70 | | | Basidiospores | 267 | 13 | 270 | 14,000 | 93 | 13 | 240 | 1,800 | 72 | | | Oidium | 13 | 7 | 20 | 210 | 26 | 7 | 13 | 6,700 | 94 | | | Rusts | 13 | 7 | 20 | 230 | 31 | 7 | | 190 | 20 | | | Smuts, Periconia, Myxomycetes | 13 | 11 | 53 | 1,200 | 82 | 8 | 13 | 270 | 29 | | | TOTAL SPORES/M3 | 1,545 | | 4*** | #4 2 17() | | 0 | 40 | 470 | 71 | | [†] The Typical Outdoor Data by Date represents the typical outdoor spore levels across North America for the mouth indicated. The last column represents the frequency of occurrence. The low, medium, and high values represent the 2.5, 50, and 97.5 percentile values of the spore type when it is detected. For example, if the frequency of occurrence is 63% and the low value is 53, it would mean that the given spore type is detected 63% of the time and, when detected, 2.5% of the time it is present in levels above the detection limit and below 53 spores/m3. These values are updated periodically, and if enough data is not available to make a statistically meaningful assessment, it is indicated with a dash. Interpretation of the data contained in this report is left to the client or the persons who conducted the field work. This report is provided for Interpretation of the data contained in this report is left to the chert or the persons who conducted the field work. This report is provided for informational and comparative purposes only and should not be relied upon for any other purpose. "Typical outdoor data" are based on the results of the analysis of samples delivered to and analyzed by EMLab P&K and assumptions regarding the origins of those samples. Sampling techniques, contaminants infecting samples, unrepresentative samples and other similar or dissimilar factors may affect these results. In addition, EMLab P&K may not have received and tested a representative number of samples for every region or time period. EMLab P&K hereby disclaims any liability for any and all direct, indirect, punitive, incidental, special or consequential damages arising out of the use or interpretation of the data contained in, or any actions taken or omitted in reliance upon, this report. [‡] The Typical Outdoor Data by Location represents the typical outdoor spore levels for the region indicated for the entire year. As with the Typical Outdoor Data by Date, the four columns represent the frequency of occurrence and the typical low, medium, and high concentration values for the spore type indicated. These values are updated periodically, and if enough data is not available to make a statistically meaningful assessment, it is indicated with a dash. [&]quot;The spores in this category are generally capable of growing on wet building materials in addition to growing outdoors. Building related growth is dependent upon the fungal type, moisture level, type of material, and other factors. Cladosportum is one of the predominant spore types worldwide and is frequently present in high numbers. Pentcillium/Aspergillus species colonize both outdoor and indoor wet surfaces rapidly and are very easily dispersed. Other genera are usually present in lesser numbers. ^{**}These fungi are generally not found growing on wet building materials. For example, the rusts and smuts are obligate plant pathogens, However, in each group there are notable exceptions. For example, agents of wood decay are members of the basidiomycetes and high counts of a single morphological type of basidiospore on an inside sample should be considered significant. # MICROBIAL SPORE TRAP AIR SAMPLING RECORD 5107243145 Page / of / Location: 450 N Street BioMax Environmental Client: D65 775 San Pablo Ave. Sacran endo, CA Project# 060208-01 Pinole, CA 94564 ZZna Flow Astrooms www.blemaxenvironmental.com Laboratory: Em Lobs Date: 6/2/08 Collected by: \$~~ &n~~ Phone: (510) 724-3100 Req. Turn Around: Z4 448 M. M. Polkaska, CM Pax: (510) 724-3145 Signature: Analysis: Fungal biomaxenv@aoi.com Particulate(II) min a sout with Quantification. *(38/),* 73ዮ /o≥⊙ Gorac Top 13858123 1100 2828084 // IS 78288 1125 13857975 1135 13828382 1145 138<u>58068</u> Post or Moin End N 1250 Total Sample Time Flow Rate Total Sample Ambient Conditions: Commi (min): (I/min): Volume (litera): Car Imald 15 Um 5~~ 752 O-10 mpst westering Please sign this form below acknowledging sample receipt and return executed form with labo reports. Fax, send, e-mail results to BioMax Environmental at (510) 724-3145 biomaxenv@a Other Instructions: 24 HR Jah Around Relinquished by: Received By: Method of Transportation: Time/Date Received: 6/4/25 900 Time/Date Sent: 4:00 6/2/08